Search results for "Current algebra"

showing 10 items of 22 documents

The enveloping algebra of the Lie superalgebra osp(1,2)

1990

International audience

Algebra and Number Theory[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]010102 general mathematicsCurrent algebraUniversal enveloping algebraLie superalgebraN = 2 superconformal algebra01 natural sciencesAffine Lie algebraSuper-Poincaré algebraGraded Lie algebraLie conformal algebra[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]Algebra0103 physical sciences010307 mathematical physics0101 mathematicsMathematics::Representation TheoryComputingMilieux_MISCELLANEOUSMathematics
researchProduct

The new results on lattice deformation of current algebra

2008

The topic “Quantum Integrable Models” was reviewed in the literature and presented to the conferences and schools many times. Only the reports of our own have been done on quite a few occasions (see, e.g., [1], [2]). So here we shall try to present a fresh approach to the description of the ingredients of construction of integrable models. It has gradually evolved in the process of our joint work. Whereas our goal was the Sugawara construction for the lattice affine algebra (known now as the St.Petersburg algebra), (see, e.g., [1]), some technical developments happen to be new and useful for the already developed subjects. Here we shall underline this development.

AlgebraSymmetric algebraFiltered algebraQuantum affine algebraCurrent algebraDivision algebraAlgebra representationCellular algebraLie conformal algebraMathematics
researchProduct

Current Algebras as Hilbert Space Operator Cocycles

1994

Aspects of a generalized representation theory of current algebras in 3 + 1 dimensions axe discussed. Rules for a systematic computation of vacuum expectation values of products of currents are described. Their relation to gauge group actions in bundles of fermionic Fock spaces and to the sesquilinear form approach of Langmann and Ruijsenaars is explained. The regularization for a construction of an operator cocycle representation of the current algebra is explained. An alternative formula for the Schwinger terms defining gauge group extensions is written in terms of Wodzicki residue and Dixmier trace.

Algebrasymbols.namesakeWeak operator topologyMathematics::Operator AlgebrasSesquilinear formCurrent algebraHilbert spacesymbolsUnitary operatorNest algebraCompact operatorRepresentation theoryMathematics
researchProduct

Structure of Kac-Moody groups

2008

For a phys ic i s t , a Kac-Moody algebra is the current algebra of a quantum f i e l d theory model in I + I space-time dimensions with an in terna l symmetry group G [ I ] . A More p rec ise ly , l e t ~ be the Lie algebra of G . The Kac-Moody algebra g is a one-dimensional central extension of the loop algebra Map(S I , g ) . I f f l ' f2 C Map(S I ,~ ) , then the commutator is defined point -wise,

CombinatoricsPhysicsHigh Energy Physics::TheoryCommutatorLoop algebraLine bundleMathematics::Quantum AlgebraLoop groupLie algebraStructure (category theory)Current algebraSymmetry groupMathematics::Representation Theory
researchProduct

Effective-Lagrangian formulation of generalized vector dominance. II

1975

As in a preceding paper we generalize the Lagrangian of Lee and Zumino to include several mutually interacting vector mesons. The treatment is more general in the sense that all possible interactions between the vector mesons, compatible with the field-current proportionality relations, are now discussed. It is moreover demonstrated that also the fields corresponding to the physical vector mesons satisfy a field-current proportionality relation of exactly the same form. Comparison of the different schemes and their implications for the magnetic moments of the vector mesons are discussed.

Coupling constantElectromagnetic fieldPhysicsMagnetic momentMesonHigh Energy Physics::LatticeNuclear TheoryCurrent algebraProportionality (mathematics)Quantum mechanicsEffective lagrangianHigh Energy Physics::ExperimentVector potentialMathematical physicsPhysical Review D
researchProduct

Algebras of pseudodifferential operators on complete manifolds

2003

In several influential works, Melrose has studied examples of non-compact manifolds M 0 M_0 whose large scale geometry is described by a Lie algebra of vector fields V ⊂ Γ ( M ; T M ) \mathcal V \subset \Gamma (M;TM) on a compactification of M 0 M_0 to a manifold with corners M M . The geometry of these manifolds—called “manifolds with a Lie structure at infinity”—was studied from an axiomatic point of view in a previous paper of ours. In this paper, we define and study an algebra Ψ 1 , 0 , V ∞ ( M 0 ) \Psi _{1,0,\mathcal V}^\infty (M_0) of pseudodifferential operators canonically associated to a manifold M 0 M_0 with a Lie structure at infinity V ⊂ Γ ( M ; T M ) \mathcal V \subset \Gamma (…

Filtered algebraCombinatoricsGeneral MathematicsAlgebra representationCurrent algebraUniversal enveloping algebraAffine Lie algebraPoisson algebraLie conformal algebraMathematicsGraded Lie algebraElectronic Research Announcements of the American Mathematical Society
researchProduct

The Virasoro Algebra

1989

In this chapter we shall study the Lie algebra Vect S1 of vector fields on a circle and some of its generalizations. The Lie algebra Vect S1 has a central extension, the Virasoro algebra. The representation theory of the Virasoro algebra is closely related to the representation theory of affine Lie algebras. In fact, through the Sugawara construction, to be defined below, a highest weight representation of an affine Lie algebra carries always a highest weight representation of the Virasoro algebra. All the irreducible highest weight representations of the Virasoro algebra are known and they can be exponentiated to representations of associated infinite-dimensional Lie groups. The representa…

Filtered algebraHigh Energy Physics::TheoryPure mathematicsMathematics::Quantum AlgebraCurrent algebraCellular algebraVirasoro algebraUniversal enveloping algebraWitt algebraAffine Lie algebraMathematicsSupersymmetry algebra
researchProduct

The Bohm-Aharonov effect: A seven-dimensional structural group

1996

We realize a nonfaithful representation of a seven-dimensional Lie algebra, the extension of which to its universal enveloping algebra contains most of the observables of the scattering Aharonov-Bohm effect, as essentially self-adjoint operators: the scattering Hamiltonian, the total and kinetic angular momenta, the positions and the kinetic momenta. By restriction, we obtain the model introduced in Lett. Math. Phys.1 (1976), 155–163.

Filtered algebraQuantum affine algebraQuantum groupQuantum mechanicsCurrent algebraAlgebra representationStatistical and Nonlinear PhysicsUniversal enveloping algebraLie superalgebraCasimir elementMathematical PhysicsMathematicsLetters in Mathematical Physics
researchProduct

On a relation between massive Yang-Mills theories and dual string models

1983

The relations between mass terms in Yang-Mills theories, projective representations of the group of gauge transformations, boundary conditions on vector potentials and Schwinger terms in local charge algebra commutation relations are discussed. The commutation relations (with Schwinger terms) are similar to the current algebra commutation relations of the SU(N) extended dual string model.

Group (mathematics)High Energy Physics::LatticeCurrent algebraStatistical and Nonlinear PhysicsCharge (physics)Yang–Mills existence and mass gapString (physics)AlgebraHigh Energy Physics::TheoryBoundary value problemGauge theoryMathematical PhysicsGroup theoryMathematicsMathematical physicsLetters in Mathematical Physics
researchProduct

Abelian current algebra and the Virasoro algebra on the lattice

1993

We describe how a natural lattice analogue of the abelian current algebra combined with free discrete time dynamics gives rise to the lattice Virasoro algebra and corresponding hierarchy of conservation laws.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsConservation lawPure mathematicsHigh Energy Physics::Lattice010102 general mathematicsCurrent algebraFOS: Physical sciences01 natural sciencesNonlinear Sciences::Exactly Solvable and Integrable SystemsHigh Energy Physics - Theory (hep-th)Discrete time and continuous timeLattice (order)0103 physical sciencesVirasoro algebra0101 mathematicsAbelian group010306 general physicsPhysics Letters B
researchProduct